3. The point P lies on the curve with equation y=ln(x/3) The x-coordinate of P is 3. Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.

P- (3,0) y=ln(x/3)     u=x/3    y=ln(u) ​​​​​​            du = 1/3  dy = 1/u = 3            dx       du dy= du x dy dx dx  du   = 1/3 x 3 = 1 gradient at normal = -1 equation at normal = y = m(x) + c                  0 = -3 + c                  3 = c Answer: equation at normal = y = -x + 3

Answered by Kaushalya B. Maths tutor

11870 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate x^x


Split (3x-4)/(x+2)(x-3) into partial fractions


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Show that the determinant of the 3x3 matrix (2 1 1 / 2 1 7 / 6 3 5) is equal to zero.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences