3. The point P lies on the curve with equation y=ln(x/3) The x-coordinate of P is 3. Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.

P- (3,0) y=ln(x/3)     u=x/3    y=ln(u) ​​​​​​            du = 1/3  dy = 1/u = 3            dx       du dy= du x dy dx dx  du   = 1/3 x 3 = 1 gradient at normal = -1 equation at normal = y = m(x) + c                  0 = -3 + c                  3 = c Answer: equation at normal = y = -x + 3

KB
Answered by Kaushalya B. Maths tutor

13109 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider f(x)=a/(x-1)^2-1. For which a>1 is the triangle formed by (0,0) and the intersections of f(x) with the positive x- and y-axis isosceles?


Prove that the d(tan(x))/dx is equal to sec^2(x).


(C3 question). Find an expression for all stationary points on the curve y=sin(x)cos(x). How many such points are there and why?


Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning