3. The point P lies on the curve with equation y=ln(x/3) The x-coordinate of P is 3. Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.

P- (3,0) y=ln(x/3)     u=x/3    y=ln(u) ​​​​​​            du = 1/3  dy = 1/u = 3            dx       du dy= du x dy dx dx  du   = 1/3 x 3 = 1 gradient at normal = -1 equation at normal = y = m(x) + c                  0 = -3 + c                  3 = c Answer: equation at normal = y = -x + 3

KB
Answered by Kaushalya B. Maths tutor

13210 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to find gradient of functions


Integrate 5cos(3x - 1) with respect to x


Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.


Given that y= 1/ (6x-3)^0.5 find the value of dy/dx at (2;1/3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning