Answers>Maths>IB>Article

Given 2x^2-3y^2=2, find the two values of dy/dx when x=5.

First solve for the exact point on the line by substituting 5 into the original equation. You should get y=+-4. 
Now implicitly differentiate the equation: 4x-6y(dy/dx)=0. Rearranging this will yield the following: dy/dx=(2x)/(3y). Because we only have one value of x, let's substitute this into the derivative first: dy/dx=10/3y. Now we can individually substitute the two y values to get the two values of dy/dx.  dy/dx = 10/12 = 5/6, dy/dx = -10/12 = -5/6 These are the two values of dy/dx when x=5. 

Answered by Kalid U. Maths tutor

6824 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Factorise z^3+1 into a linear and quadratic factor. Let y=(1+i√3)/2. Show that y is a cube root of -1. Show that y^2=y-1. Find the value of (1-y)^6.


Solve equation 5^(2*x) = 5^(x)+5


Find the Cartesian equation of plane Π containing the points A(6 , 2 , 1) and B(3, -1, 1) and perpendicular to the plane Π2 (x + 2y - z - 6 = 0).


The sixth term of an arithmetic sequence is 8 and the sum of the first 15 terms is 60. Find the common difference and list the first three terms.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences