Answers>Maths>IB>Article

Given 2x^2-3y^2=2, find the two values of dy/dx when x=5.

First solve for the exact point on the line by substituting 5 into the original equation. You should get y=+-4. 
Now implicitly differentiate the equation: 4x-6y(dy/dx)=0. Rearranging this will yield the following: dy/dx=(2x)/(3y). Because we only have one value of x, let's substitute this into the derivative first: dy/dx=10/3y. Now we can individually substitute the two y values to get the two values of dy/dx.  dy/dx = 10/12 = 5/6, dy/dx = -10/12 = -5/6 These are the two values of dy/dx when x=5. 

KU
Answered by Kalid U. Maths tutor

6999 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Which are the difference between polar and coordinate complex numbers?


Prove that (sinx)^2 + (cosx)^2 = 1


Solve: 1/3 x = 1/2 x + (− 4)


In a lottery, 6 numbered balls are drawn from a pool of 59. Calculate the probability of scoring a jackpot. There used to be 49 balls in the pool. Calculate by how much the addition of 10 balls has decreased the probability of scoring a jackpot


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences