The random variable J has a Poisson distribution with mean 4. Find P(J>2)

P(J>2) = P(J=0)+P(J=1)     [split it up]

P(X=t)= (V^t)/t!*e^V       where V=4 in this case  [use the formula]

P(J>2) = 4^0/0!*e^4 + 4^1/1!*e^4

          =1/e^4 + 4/e^4  =  5e^-4  which is roughly  0.0916

NC
Answered by Nathan C. Maths tutor

4291 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of a Circle with centre (2,9) and radius 4.


What is the gradient of the curve y = 2x^3 at the point (2,2)?


Demonstrate that (2^n)-1 is not a perfect square for any n>2, n ∈ N.


Express 3sin(2x) + 5cos(2x) in the form Rsin(2x+a), R>0 0<a<pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning