The random variable J has a Poisson distribution with mean 4. Find P(J>2)

P(J>2) = P(J=0)+P(J=1)     [split it up]

P(X=t)= (V^t)/t!*e^V       where V=4 in this case  [use the formula]

P(J>2) = 4^0/0!*e^4 + 4^1/1!*e^4

          =1/e^4 + 4/e^4  =  5e^-4  which is roughly  0.0916

NC
Answered by Nathan C. Maths tutor

4178 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


Differentiate y=sin(x)*x^2.


Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).


You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning