The random variable J has a Poisson distribution with mean 4. Find P(J>2)

P(J>2) = P(J=0)+P(J=1)     [split it up]

P(X=t)= (V^t)/t!*e^V       where V=4 in this case  [use the formula]

P(J>2) = 4^0/0!*e^4 + 4^1/1!*e^4

          =1/e^4 + 4/e^4  =  5e^-4  which is roughly  0.0916

NC
Answered by Nathan C. Maths tutor

4092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

One important question type to be able to answer is integrating squared trig functions. like cos^2(x)


What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?


Find the equation of the line through the following points: (-2, -3) and (1, 5)


Given the parametric equations x = t^2 and y = 2t -1 find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning