Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.

We can divide by (cosx)^2 across the identity (sinx)^2 + (cosx)^2 = 1 (which can be derived from properties of the unit circle and a bit of Pythagoras’ theorem) to achieve

[(sinx)^2 / (cosx)^2] + [(cosx)^2 / (cosx)^2] = [1 / (cosx)^2]

Which leaves us with our desired identity

(tanx)^2 + 1 (secx)^2 = 1

Answered by Annie B. Maths tutor

2966 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(The question is too long so it's marked at the top of the answer space, sorry for any inconveniences)


differentiate y=(4x^3)-5/x^2


Integrate 2sin(theta)cos(2*theta)


G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences