Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.

We can divide by (cosx)^2 across the identity (sinx)^2 + (cosx)^2 = 1 (which can be derived from properties of the unit circle and a bit of Pythagoras’ theorem) to achieve

[(sinx)^2 / (cosx)^2] + [(cosx)^2 / (cosx)^2] = [1 / (cosx)^2]

Which leaves us with our desired identity

(tanx)^2 + 1 (secx)^2 = 1

AB
Answered by Annie B. Maths tutor

3247 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate x^2 from first principles


What is the turning point on the curve f(x) = 2x^2 - 2x + 4


The gradient of a curve is given by dy/dx = 3 - x^2. The curve passes through the point (6,1). Find the equation of the curve.


Show, by first principles, that the differential of x^2 is 2x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences