Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.

We can divide by (cosx)^2 across the identity (sinx)^2 + (cosx)^2 = 1 (which can be derived from properties of the unit circle and a bit of Pythagoras’ theorem) to achieve

[(sinx)^2 / (cosx)^2] + [(cosx)^2 / (cosx)^2] = [1 / (cosx)^2]

Which leaves us with our desired identity

(tanx)^2 + 1 (secx)^2 = 1

AB
Answered by Annie B. Maths tutor

3501 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = 5x^3 - 2x^2 + 2, what is dy/dx?


A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


By writing tan x as sin x cos x , use the quotient rule to show that d dx ðtan xÞ ¼ sec2 x .


A curve C with an equation y = sin(x)/e^(2x) , 0<x<pi has a stationary point at P. Find the coordinates ofP?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning