How do you 'complete the square' of a quadratic equation?

To complete the square, we need to rearrange the quadratic equation in the form of ax2 + bx + c into the form r(x + p)2 + q, where our task is to find the values of the unkowns of r, p and q.  Let's take the example of  completing the square of x+ 3x + 5.  The coeffecient of x2 is equal to r, so we can determine early on that the value of r is equal to 1.  The value of p is found by ensuring the coefficient of x is equal to 3.  Since the bracket is being squared, we know that the expanded form of the square bracket will give us x2 + 2px + p2.  Since 3x and 2px are equal, we can determine that 2p = 3 and therefore p = 3/2.  The last step is to find q.  To find q, we need to subtract the constant formed from the (x + p)2 expansion and then add on the constant c that we should have.  Therefore, the value of q is equal to -p2 + c.   q = -(3/2)2 + 5 = -9/4 + 5 = -9/4 + 20/4 = 11/4.

Therefore, the completed the square form of the quadratic equation x2 + 3x + 5 is (x + 3/2)2 + 11/4.

Answered by Ryan B. Maths tutor

2719 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simulatenous equation to find the values of both x and y: 5x+2y=16 and 3x-y=14


Solve simultaneously: x^2+y^2=25 and y-3x=13


Solve: sin(x) = 0.5, in the interval of 0 < x < 360 degree.


A shop sells bags of crisps in different size packs. There are 18 bags of crisps in a small pack (£4), 20 bags of crisps in a medium pack (£4.99) and 26 bags of crisps in a large pack (£6). Which size pack is the best value for money?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences