Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0

The first thing required is to find out what dy/dx is in terms of x. For this, we need to differentiate y with respect to x which be can so to each term of the polynomial. All you need to do is mutiply the term (e.g. ax^b) by the the exponential, and lower the exponential by 1 (e.g. abx^(b-1). Hence:

dy/dx = 16 - x^(-2)=0

=> need x^(-2)=16

=> 1=16x^2

=> x=1/4 or x=-1/4

Answered by James M. Maths tutor

6729 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

if f(x) = 7x-1 and g(x) = 4/(x-2), solve fg(x) = x


If the quadratic equation kx^2+kx+1=0 has no real roots, what values of k are possible?


Integrate (x+2)/((x+5)(x-7)) using partial fractions between the limits 5 and -2, giving your answer to 3sf


A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences