Find the integral of (sinxcos^2x) dx

To find the Integral of (sinxcos^2x) dx, we must first use our knowledge of integration and differentiation of simple trigonometric functions. Such as Sinx and Cosx. Combined with our knowledge of integrating functions of functions such (1+x)^2 or (sinx)^2. By working backwards and thinking about what we would have to differentiate to get close to sinxcos^2x. We can determine that cos^3x would give us -3sinxcos^2x. Thus the integral of (sinxcos^2x) dx is -1/3cos^3x.

ZS
Answered by Zachary S. Maths tutor

16431 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = (sin(6x))(sec(2x) ), find dy/dx


Integrate x*ln(x) with respect to x


Express 4sinx-cos(pi/2 - x) as a single trignometric function


Differentiate y=(3+sin(2x))/(2+cos(2x))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning