Find the integral of (sinxcos^2x) dx

To find the Integral of (sinxcos^2x) dx, we must first use our knowledge of integration and differentiation of simple trigonometric functions. Such as Sinx and Cosx. Combined with our knowledge of integrating functions of functions such (1+x)^2 or (sinx)^2. By working backwards and thinking about what we would have to differentiate to get close to sinxcos^2x. We can determine that cos^3x would give us -3sinxcos^2x. Thus the integral of (sinxcos^2x) dx is -1/3cos^3x.

Answered by Zachary S. Maths tutor

11529 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y+4x+1=0 and y^2+5x^2+2x=0


The region R is bounded by the curve y=sqrt(x)+5/sqrt(x) the x-axis and the lines x = 3, x = 4. Find the volume generated when R is rotated through four right-angles about the x-axis. Give your answer correct to the nearest integer.


The line AB has equation 5x + 3y + 3 = 0. The point with coordinates (2k + 3, 4 -3k) lies on the line AB. How do you find the value of k.


Integrate ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences