Find the integral of (sinxcos^2x) dx

To find the Integral of (sinxcos^2x) dx, we must first use our knowledge of integration and differentiation of simple trigonometric functions. Such as Sinx and Cosx. Combined with our knowledge of integrating functions of functions such (1+x)^2 or (sinx)^2. By working backwards and thinking about what we would have to differentiate to get close to sinxcos^2x. We can determine that cos^3x would give us -3sinxcos^2x. Thus the integral of (sinxcos^2x) dx is -1/3cos^3x.

ZS
Answered by Zachary S. Maths tutor

16667 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2


How do you integrate x* (exp(x))??


What are the uses of derivatives in algebra?


Find the equation of the tangent to the circle (x-3)^2 + (y-4)^2 = 13 that passes through the point (1,7)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning