Find the integral of (sinxcos^2x) dx

To find the Integral of (sinxcos^2x) dx, we must first use our knowledge of integration and differentiation of simple trigonometric functions. Such as Sinx and Cosx. Combined with our knowledge of integrating functions of functions such (1+x)^2 or (sinx)^2. By working backwards and thinking about what we would have to differentiate to get close to sinxcos^2x. We can determine that cos^3x would give us -3sinxcos^2x. Thus the integral of (sinxcos^2x) dx is -1/3cos^3x.

Answered by Zachary S. Maths tutor

12491 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation: 2(x^2)y + 2x + 4y – cos(pi*y) = 17. Use implicit differentiation to find dy/dx in terms of x and y.


Use the substitution u=cos(2x)to find ∫(cos(2x))^2 (sin(2x))^3dx


A function is defined as f(x) = x / sqrt(2x-2). Use the quotient rule to show that f'(x) = (x-2)/(2x-2)^(3/2)


Integration by parts: Integrate the expression x.ln(x) between 1 and 2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences