How to integrate e^(5x) between the limits 0 and 1.

Note that by the chain rule if the function y is such that y(x)=f(g(x)), where f and g are functions, then the derivative of y wrt x is given by

dy/dx = (df/dg)*(dg/dx).

Hence if we let the function y be e^(5x) and g(x)=5x then y(x)=e^(g(x)). Then by the chain rule as detailed above dy/dx = 5*e^(5x).

Note that this is similar to the function we're integrating e^(5x). In fact the derivative of (1/5)*e^(5x) is e^(5x). Let F(x) be this function.

Hence the value of the integral between the limits 0 and 1 is the difference of this function evaluated at the limits, that is F(1)-F(0) which is (1/5)*(e^(5)-1).

MS
Answered by Max S. Maths tutor

11962 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the partial fraction decomposition of the expression: (4x^2 + x -64)/((x+2)(x-3)(x-4)).


OCR C2 2015 Question 8: (a) Use logarithms to solve the equation 2^(n-3) = 18,000 , giving your answer correct to 3 significant figures. (b) Solve the simultaneous equations log2(x) + log2(y) = 8 & log2(x^2/y) = 7.


Solve inequality: sqrt(x^2) + x < 1


Find the derivative of x^3 - (y^2)x =3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning