Find the indefinite integral of 3x - x^(3/2) dx

To find the integral of a function you must first incease the power of x by one then divide to coefficient by the new power. So, by increasing the powers first you get 3x^2 - x^(5/2) and then dividing by the new powers you get (3/2)x^2 - (2/5)x^(5/2) and make sure not to forget +c.

Answered by Alex J. Maths tutor

3839 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate the following to find the equation for the gradient of the curve in terms of x and y: 3x^3 + 4x^2 + 5xy + 7y = 0


A car is accelerating at 2 ms^-2 along a horizontal road. It passes a point A with a velocity of 10 ms^-1 and later a point B, where AB = 50m. FInd the velocity of the car as it passes through B.


Given that y = 16x + 1/x , find the two values of x for which dy/dx = 0


Find dy/dx at t=3, where x=t^3-5t^2+5t and y=2t^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences