Find the indefinite integral of 3x - x^(3/2) dx

To find the integral of a function you must first incease the power of x by one then divide to coefficient by the new power. So, by increasing the powers first you get 3x^2 - x^(5/2) and then dividing by the new powers you get (3/2)x^2 - (2/5)x^(5/2) and make sure not to forget +c.

AJ
Answered by Alex J. Maths tutor

5142 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


I don't fully understand the purpose of integration. Could you please explain it to me?


A curve has an equation: (2x^2)*y +2x + 4y – cos(pi*y) = 17. Find dy/dx


How would you use the following expression to approximate [(4-5x)/(1+2x)(2-x)] when x=5 (A2 pure)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning