Prove that 12 cos(30°) - 2 tan(60°) can be written as √k where k is an integer, state the value of k.

Conversion of trigonometric functions:

cos(30°) = √3 / 2

tan(60°) = √3

Computing equation with trigonometric substitutions:

12 cos(30°) - 2 tan(60°) = 12 (√3 / 2) - 2 (√3) = (12 / 2) x √3 - 2√3 = 6√3 - 2√3 = 4√3

Rearranging into requested form:

4√3 = √42 x √3 = √16 x √3 = √48

Stating k:

√k = √48

k = 48

ND
Answered by Nic D. Maths tutor

8018 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Jodie buys 12 cans of cola. There are 330 ml of cola in each can. Rob buys 4 bottles of cola. There is 1 litre of cola in each bottle. Rob buys more cola than Jodie. How much more?


Solve the simultaneous equations: x^2 + y^2 = 9 and x + y = 2


A linear sequence starts a + 2b, a + 6b, a + 10b … The 2nd term has value 8 The 5th term has value 44 Work out the values of a and b.


How do I solve simultaneous equations given a linear and a quadratic equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning