Prove that 12 cos(30°) - 2 tan(60°) can be written as √k where k is an integer, state the value of k.

Conversion of trigonometric functions:

cos(30°) = √3 / 2

tan(60°) = √3

Computing equation with trigonometric substitutions:

12 cos(30°) - 2 tan(60°) = 12 (√3 / 2) - 2 (√3) = (12 / 2) x √3 - 2√3 = 6√3 - 2√3 = 4√3

Rearranging into requested form:

4√3 = √42 x √3 = √16 x √3 = √48

Stating k:

√k = √48

k = 48

ND
Answered by Nic D. Maths tutor

7478 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Express the equation x^2+6x-12 in the form (x+p)^2+q


Sketch the curve y=4-(x+3)^2, showing the points where the curve crosses the x-axis and any minimum or maximum points.


How do I use Pythagoras to work out the length of a triangle?


There are 5 white socks and 3 black socks in a draw. Steven takes out 2 at random. Work out the probability that Steven takes out 2 socks of the same colour.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences