Prove that 12 cos(30°) - 2 tan(60°) can be written as √k where k is an integer, state the value of k.

Conversion of trigonometric functions:

cos(30°) = √3 / 2

tan(60°) = √3

Computing equation with trigonometric substitutions:

12 cos(30°) - 2 tan(60°) = 12 (√3 / 2) - 2 (√3) = (12 / 2) x √3 - 2√3 = 6√3 - 2√3 = 4√3

Rearranging into requested form:

4√3 = √42 x √3 = √16 x √3 = √48

Stating k:

√k = √48

k = 48

Answered by Nic D. Maths tutor

7008 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you check if a graph ever touches the x-axis?


Solve the simultaneous equation: (16^x)/(8^y)=1/4 and (4^x)(2^y)=16


How to solve a simple simultaneous equation


V= 4(h^3 +1)^0.5 - 4, find dv/dh when h=2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences