How to solve simultaneous equations with a quadratic

Example.

" Solve the simultaneous equations

y + 4x + 1 = 0

y^2 + 5x^2 + 2x = 0 "

We can rearrange the first equation to something that we can substitute into the second equation, for example

y = -4x - 1

We then substitute this into the second equation

(-4x - 1)^2 + 5x^2 + 2x = 0

16x^2 + 8x + 1 + 5x^2 + 2x = 0

21x^2 + 10x + 1 = 0

(7x + 1)(3x + 1) = 0

Gives us the solutions

x = -1/7 and x = -1/3

We then put these values into our first equation (y = -4x - 1) to give

y = -3/7 and y = 1/3

Answered by Tilly W. Maths tutor

2479 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


A curve has parametric equations: x = 3t +8, y = t^3 - 5t^2 + 7t. Find the co-ordinates of the stationary points.


Differentiate: y=12x(2x+1)+1/x


Suppose a population of size x experiences growth at a rate of dx/dt = kx where t is time measured in minutes and k is a constant. At t=0, x=xo. If the population doubles in 5 minutes, how much longer does it take for the population to reach triple of Xo.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences