How do you factorise the following quadratic: x^2 - 5*x - 14?

An example of an application of factorising quadratics is to find the unknown in the equation, x. Factorising means writing the above equation in the form (x+a)(x+b)=0 Using FOIL (First, Outer, Inner, Last) to expand the brackets we get the equation: x^2+(a+b)x+ab=0 which we can see is in the same format as the expression given. Factorising is just the reverse of expanding the brackets. So we need to find the variables a and b. As we can see from our expanded standard equation the coefficient of the second term is a+b and the coefficient of the last term is a*b. So we need to find two numbers that add together to make 5 and multiply to make negative 14. Lets start with the factors of -14 which are: -1 and 14 -2 and 7 1 and -14 2 and -7 2 and -7 added together make -5 so these are a and b. So we write them into the equation: (x+2)(x-7)=0. And this is our answer. 

Answered by Emma P. Maths tutor

3053 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make y the subject of the formula. x=(6+2y)/(3-y)


(a) Expand and simplify (x − 3)(x + 5), ..2 marks.. (b) Solve x^2 + 8x − 9 = 0 ..3 marks..


The sides of an equilateral triangle are given by the expressions x+y, 2y-1 and 3y-2x+1. Find the values of x and y.


Let a = 4b + 5(c - b). Find the value of c when a = 8 and b = 7.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences