How do you prove the 1^2 +2^2+.....+n^2 = n/6 (n+1) (2n+1) by induction?

There are three simple steps to prove anything by induction.

Step 1: When n=1

12=1

then: 1/6 x 1x (1+1) x (2+1)

=1x2x3/6 =1

Therefore it is true for n=1 

Step 2: Assume it is true for n=k

so, 

1+ 22+....+k= k/6 (k+1) (2k+1) 

Step 3: Solve for n= k+1

12+22+.....+ k2 + (k+1)= k/6 (k+1) (2k+1) + (k+1)2

= (k+1)/6 (k(2k+1) + 6(k+1) )

= (k+1)/6 (2k2+7k+6)

= (k+1)/6 x (2k+3) x (k+2)

= (k+1)/6 ( (k+1)+1 ) (2(k+1)+1) )

Therefore it is true for n= k+1 

Thererore it must be true for all values. 

Answered by Vaisaalii I. Maths tutor

3908 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you solve the inequality x^2-2x-8 >= 0?


Solve the equation x=4-|2x+1|


How do I find the solution of the simultaneous equations x+3y=7 and 5x+2y=8


The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences