Given that y = 4x^3 – 5/(x^2) , x =/= 0, find in its simplest form dy/dx.

We are given: y = 4x^3  – 5/(x^2) To find the dy/dx we are going to use the power rule, from the power rule differentiating x^n gives n*x^n-1, so from our equation differetiating x^3 will give 3x^2, but we need the differential of 4x^3, this will be 12x^3. The derivative of 5/(x^2) is the same as differentiating 5x^-2,  hence, again from the power rule,  differentiating 5x^-2 gives -10x^-3, which is the same as -10/(x^3) so dy/dx = 12x^2 -10/(x^3)

MA
Answered by Mohamed A. Maths tutor

5115 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y = (1/3)x^3 + 4x^2 + 12x +3. Find the coordinates of each turning point and determine their nature.


Show the sum from n=0 to 200 of x^n given that x is not 1, is (1-x^201)/(1-x) hence find the sum of 1+2(1/2)+3(1/2)^2+...+200(1/2)^199


Find the derivative of A^4 + 2A^2 - 3A + 4


If y = exp(x^2), find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences