What is the area bound by the x-axis, the lines x=1 and x=3 and the curve y=3x^(2)-1/x ? Answer in exact form.

Integrate, y= 3x-1/x

 1{3x- 1/x dx = [x-lnx]31= (3-ln3)-(1-ln1) = 3-ln3-1+0= 2-ln3

Answered by Escher L. Maths tutor

3484 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation 4x^2 – y^3 – 4xy + 2^y = 0 The point P with coordinates (–2, 4) lies on C . Find the exact value of dy/dx at the point P .


Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.


Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


What is the centre and radius of the circle x^2+y^2-6x+4y=-4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences