Integrate xsin2x

Integrate by parts: integral = [uv] - ∫u'v dx (u'= derivative of u, v'= derivative of v)

u= x     u'= 1

v' = sin2x        v= -0.5cos2x

= -0.5xcosx  -  ∫-0.5cos2x dx

= -0.5xcosx + 0.25sin2x + c

Answered by Julia E. Maths tutor

18641 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to factorise any quadratic expression


Using the binomial theorem, find the coefficient of x^4*y^5 in (x-2y)^9.


Let f(x)=x^3-6x+3. i)Differentiate f(x) to find dy/dx. ii) Given that dy/dx = 12, find the value of x.


A curve is defined by the parametric equations x=t^2/2 +1, y=4/t -1. Find the gradient of the curve when t =2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences