Give the general solution to (d2y/dx2) - 2dy/dx -3y = 2sinx

Using the auxiliary equation t^2 - 2t - 3t = 0  t therefore is equal to 3 or -1. Using this value, a complementary function is derived.  Y= Ae^(3x) + Be^(-x). Finally, to fully solve, a particular integral of y = asinx + bcosx and differentiate it twice, to give equations for Dy/dx and (d2y/dx2). These can be substituted into the initial differential equations to find the values of a and b, Which are -2/5 and 1/5 respectively. The answer is then the complementary function plus the solution to the particular integral y = Ae^(3x) + Be^(-x) + (1/5)cosx - (2/5)sinx

Related Further Mathematics A Level answers

All answers ▸

solve the equation 4cos^2(x) -15sin(x) = 13


In simple harmonic motion, where would the object have the largest speed. If the angular velocity is 2 rad s^-1, and the amplitude is 1m, what is the largest speed obtained by the object?


How do I sketch the locus of |z - 5-3i | = 3 on an Argand Diagram?


Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences