Give the general solution to (d2y/dx2) - 2dy/dx -3y = 2sinx

Using the auxiliary equation t^2 - 2t - 3t = 0  t therefore is equal to 3 or -1. Using this value, a complementary function is derived.  Y= Ae^(3x) + Be^(-x). Finally, to fully solve, a particular integral of y = asinx + bcosx and differentiate it twice, to give equations for Dy/dx and (d2y/dx2). These can be substituted into the initial differential equations to find the values of a and b, Which are -2/5 and 1/5 respectively. The answer is then the complementary function plus the solution to the particular integral y = Ae^(3x) + Be^(-x) + (1/5)cosx - (2/5)sinx

Related Further Mathematics A Level answers

All answers ▸

Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction


FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)


f(x)=ln(x). Find the area underneath the curve f(x) between 1 and 2.


Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences