Use logarithms to solve the equation 2^(5x) = 3^(2x+1) , giving the answer correct to 3 significant figures

Taking the log of both sides we get 5x * ln2 = (2x+1) * ln3.
Taking everything that contains x to the left side: x * (5ln2 - 2ln3) = ln3.
Therefore x=ln3/(5ln2 - 2ln3)
x is approx 0.866

BB
Answered by Beatrice B. Maths tutor

9235 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that (2x + 11 )/(2x + 1)(x + 3) ≡ A /(2x + 1) + B /(x + 3) , find the values of the constants A and B. Hence show that the integral from 0 to 2 (2x + 11)/ (2x + 1)(x + 3) dx = ln 15.


Simplify (􏰀36x^−2)􏰁^ 0.5


Solve x^2=4(x-3)^2


Find the value of x if the following is true: 3(x – 2) < 8 – 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences