Use logarithms to solve the equation 2^(5x) = 3^(2x+1) , giving the answer correct to 3 significant figures

Taking the log of both sides we get 5x * ln2 = (2x+1) * ln3.
Taking everything that contains x to the left side: x * (5ln2 - 2ln3) = ln3.
Therefore x=ln3/(5ln2 - 2ln3)
x is approx 0.866

Answered by Beatrice B. Maths tutor

8900 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.


Find integers A and B, such that (5x +4)/((2-x)(1+3x)) = A/(2-x) + B/(1+3x)


Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10.


A function f is defined by f(x) = x^3 - 3x^2 + 1. i) Write down f'(x). ii) Hence find the co-ordinates of the stationary points of the curve y=f(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences