Prove: (1-cos(2A))/sin(2A) = tan(A)

Firstly we must lay out our double angle formulas which are required for this question: cos(2A) = 1-2sin^2(A) = 2cos^2(A)-1 sin(2A) = 2sin(A)cos(A) Working from LHS: (1-cos(2A))/sin(2A) Focusing on the denominator 1-cos(2A) = 1-(1-2sin^2(A)) = 2sin^2(A) Focusing on the numerator sin(2A) = 2sin(A)cos(A) Therefore, overall: (1-cos(2A))/sin(2A) = 2sin^2(A)/2sin(A)cos(A) = 2*sin(A)sin(A) / 2sin(A)*cos(A) = sin(A)/cos(A) = tan(A) AS REQUIRED 

Answered by Rishi P. Maths tutor

19544 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you intergrate a function?


Express (5sqrt(3)-6)/(2sqrt(3)+3) in the form m+nsqrt(3) where m and n are integers. [Core 1]


Differentiate f = ln(x^2 + 1) / (x ^ 2 + 1).


i) Simplify (2 * sqrt(7))^2 ii) Find the value of ((2 * sqrt(7))^2 + 8)/(3 + sqrt(7)) in the form m + n * sqrt(7) where n and m are integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences