Prove: (1-cos(2A))/sin(2A) = tan(A)

Firstly we must lay out our double angle formulas which are required for this question: cos(2A) = 1-2sin^2(A) = 2cos^2(A)-1 sin(2A) = 2sin(A)cos(A) Working from LHS: (1-cos(2A))/sin(2A) Focusing on the denominator 1-cos(2A) = 1-(1-2sin^2(A)) = 2sin^2(A) Focusing on the numerator sin(2A) = 2sin(A)cos(A) Therefore, overall: (1-cos(2A))/sin(2A) = 2sin^2(A)/2sin(A)cos(A) = 2*sin(A)sin(A) / 2sin(A)*cos(A) = sin(A)/cos(A) = tan(A) AS REQUIRED 

Answered by Rishi P. Maths tutor

19451 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

i) differentiate xcos2x with respect to x ii) integrate xcos2x with respect to x


Differentiate the equation y^2 + y = x^3 + 2x


Find the integral of (2(3x+2))/(3x^2+4x+9).


The functions f and g are defined by f : x → 2x + ln 2, g : x → e^(2x). Find the composite function gf, sketch its graph and find its range.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences