Consider a cone of vertical height H (in metres) and base radius R (in metres) which is full with water. The cone, at time t=0, starts to leak such that it loses water at a rate of k m^3 per second. Give an expression for the rate of change of H.

L = (H2+R2)1/2 V = (1/3)πR2(H2+R2)1/2

dV/dt = -k

dH/dt = dH/dV × dv/dt

dV/dH = (1/3)πR2H(H2+R2)1/2

Thus, dH/dt = -3k/(πR2H(H2+R2)1/2) ​​​​​​​​​​​

CE
Answered by Callum E. Maths tutor

3696 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A Curve has parametric equation x=2sin(t), y= 1+cos(2t), -pi/2<=t<=pi/2. a) Find dy/dx when t=pi/3. b) Find the Cartesian equation for the curve in form y=f(x), -k<=x<=k. c) Find the range of f(x)


How to differentiate with respect to x, xsin2x.


I can differentiate exponentials (e^x), but how can I differentiate ln(x)?


Integrate f(x)=lnx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning