Consider a cone of vertical height H (in metres) and base radius R (in metres) which is full with water. The cone, at time t=0, starts to leak such that it loses water at a rate of k m^3 per second. Give an expression for the rate of change of H.

L = (H2+R2)1/2 V = (1/3)πR2(H2+R2)1/2

dV/dt = -k

dH/dt = dH/dV × dv/dt

dV/dH = (1/3)πR2H(H2+R2)1/2

Thus, dH/dt = -3k/(πR2H(H2+R2)1/2) ​​​​​​​​​​​

Answered by Callum E. Maths tutor

2986 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A level Maths question - The graph of y=2sin(2x)+1 is rotated 360 degrees about the x-axis to form a solid. Find the volume enclosed by the curve, the co-ordinate axes and the line x=pi/2


y = 4(x^3) + 7x ... Find dy/dx


Given f(x) = 7(e^2x) * (sin(3x)), find f'(x)


How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences