How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?

A1) Showing that (x+2) is a factor of f(x).         General Method:  If A is a number, then (x- A) is a factor of f(x) if when x=A,  f(x=A)=0    <-- This is what we want to show                                              This is because if (x-A) is a factor of f(x) then we can write:  f(x) = (x - A) x (some other function)      [ in the same way as 8= 2 x 4 =  2 x (another number)]                                      Therefore if x = A, then f(x=A) = (A-A) x (some other function) = 0 x (some other function) = 0.        Our Question:   We have to show (x + 2) is a factor, and our general method uses (x - A).  We can still use our method as (x - A) = (x + {-A}). Therefore comparing the formula,  -A = 2    =>   A = -2                                f(x=A = -2) = (-2)^3  - 19(-2) - 30 = -8 + 38 - 30 = 38 - 38 =0.    A2)  To factorise completely:   We know that f(x) = (x+2) x (some other function)                                                The largest term in f(x) = x^3, so f(x) = (x+2)(ax^2 + bx + c) = x^3 - 19x - 30                                                Multiplying out & comparing terms:    ax^3 + bx^2 +cx + 2ax^2 +2bx + 2c  = ax^3+x^2(b+2a) + x(c+2b) + 2c = x^3 - 19x - 30                                                   a=1 ,   b+2a= b+2=0 => b = -2   ,    c+2b = c + 2(-2) = c - 4 = -19 => c= -15                          Therefore: f(x) = (x+2)(x^2 - 2x - 15)                        We can factorise further (x^2 - 2x - 15) = (x+d)(x+e)  comparing terms in a similar way as before leads to final factorisation of       f(x) = (x+2)(x-5)(x+3)                                                                                     

Answered by Rebecca W. Maths tutor

8641 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I demonstrate that (sin(T)+cos(T))(1-sin(T)cos(T))=(sin(T))^3+(cos(T))^3


For the curve y = 2x^2+4x+5, find the co-ordinates of the stationary point and determine whether it is a minimum or maximum point.


The point on the circle x^2+y^2+6x+8y = 75 which is closest to the origin, is at what distance from the origin? (Taken from an MAT paper)


Can you help me understand how Arithmetic sequences work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences