How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?

A1) Showing that (x+2) is a factor of f(x).         General Method:  If A is a number, then (x- A) is a factor of f(x) if when x=A,  f(x=A)=0    <-- This is what we want to show                                              This is because if (x-A) is a factor of f(x) then we can write:  f(x) = (x - A) x (some other function)      [ in the same way as 8= 2 x 4 =  2 x (another number)]                                      Therefore if x = A, then f(x=A) = (A-A) x (some other function) = 0 x (some other function) = 0.        Our Question:   We have to show (x + 2) is a factor, and our general method uses (x - A).  We can still use our method as (x - A) = (x + {-A}). Therefore comparing the formula,  -A = 2    =>   A = -2                                f(x=A = -2) = (-2)^3  - 19(-2) - 30 = -8 + 38 - 30 = 38 - 38 =0.    A2)  To factorise completely:   We know that f(x) = (x+2) x (some other function)                                                The largest term in f(x) = x^3, so f(x) = (x+2)(ax^2 + bx + c) = x^3 - 19x - 30                                                Multiplying out & comparing terms:    ax^3 + bx^2 +cx + 2ax^2 +2bx + 2c  = ax^3+x^2(b+2a) + x(c+2b) + 2c = x^3 - 19x - 30                                                   a=1 ,   b+2a= b+2=0 => b = -2   ,    c+2b = c + 2(-2) = c - 4 = -19 => c= -15                          Therefore: f(x) = (x+2)(x^2 - 2x - 15)                        We can factorise further (x^2 - 2x - 15) = (x+d)(x+e)  comparing terms in a similar way as before leads to final factorisation of       f(x) = (x+2)(x-5)(x+3)                                                                                     

RW
Answered by Rebecca W. Maths tutor

9336 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How does integration by parts work?


Differentiate with respect to x: 3 sin^2 x + sec 2x


Find dy/dx for y=5x^3−2x^2+7x−15


There is a Ferris wheel where the passengers are placed 10m away from the centre. At what speed must they be moving in order for them to feel completely weightless at the top of the wheel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning