How can aldehydes and ketones be distinguished?

Firstly note that in general aldehydes are more reactive than ketones. This is a result of two effects: 

1. Ketones are more sterically hindered.

2. Alkyl groups are electron donating and so reduce the partial positive charge on the carbonyl carbon. 

As a consequence of this difference in reactivity aldehydes are oxidised more easily than ketones and so, by selecting a sufficiently weak oxidising agent, we can distinguish the two functional groups by oxidising one but not the other. 

Fehling's Test

The test begins as two separate solutions - Fehling's A and Fehling's B. The first is a light blue CuSOsolution while the second is a solution of a chelate and sodium hydroxide. 

Equal volumes of the two solutions are mixed and the sample is added. The resulting solution is heated.

Aldehyde - The aldehyde is oxidised and a brick red Cu(I) oxide precipitates out,

Ketone - No reaction occurs.

The Silver Mirror Test

This test makes use of Tollen's reagent which contains the complex [Ag(NH3)2]+. It is easily made by mixing aqueous ammonia with aqueous silver nitrate. 

Aldehyde - Upon heating with Tollen's reagent solid silver metal is produced as Agis reduced to Ag.

Ketone - No reaction occurs.

Answered by George B. Chemistry tutor

60575 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Explain the structure and characteristics of benzene


Calculate the mass of sodium amide needed to obtain 550 g of sodium azide, assuming there is a 95.0% yield of sodium azide. Give your answer to 3 significant figures.


Give and explain 2 of the anomalous properties of ice caused by hydrogen bonding (3)


Draw the shape of an SF6 and SF4 molecule, indicating bond angles and any lone pairs which may influence these. What shape is the SF6 molecule?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences