differentiate (1+2x^2)^(1/2)

This differentiation requires use of the chain rule. The first step is to differentiate the whole thing, treating the bracket as u, so u=1+2x2. Therefore we are differentiating u1/2. This means our first step gives us the value:   1/2*u-1/2     (given student understands simple differentiation) Replacing u this gives us  1/2 *(1+2x2)-1/2   but now we must multiply this by the differential of the inside of the bracket (u=1+2x2) differentiating gives:  du/dx=4x   as the constant term disappears. so putting this back in, you multiply our two answers together to give                          dy/dx = 1/2 *(1+2x2)-1/2 *4x                            = 2x *(1+2x2)-1/2   and so you have your answer.

Answered by Reuben S. Maths tutor

9385 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is an easy way to remember how sin(x) and cos(x) are differentiated and integrated?


y = 4x^3 - 5/x^2 find dy/dx


Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]


The gradient of the curve at A is equal to the gradient of the curve at B. Given that point A has x coordinate 3, find the x coordinate of point B.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences