differentiate (1+2x^2)^(1/2)

This differentiation requires use of the chain rule. The first step is to differentiate the whole thing, treating the bracket as u, so u=1+2x2. Therefore we are differentiating u1/2. This means our first step gives us the value:   1/2*u-1/2     (given student understands simple differentiation) Replacing u this gives us  1/2 *(1+2x2)-1/2   but now we must multiply this by the differential of the inside of the bracket (u=1+2x2) differentiating gives:  du/dx=4x   as the constant term disappears. so putting this back in, you multiply our two answers together to give                          dy/dx = 1/2 *(1+2x2)-1/2 *4x                            = 2x *(1+2x2)-1/2   and so you have your answer.

Answered by Reuben S. Maths tutor

8868 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify: 3l^2mn+nl^2m−5mn^2l+l^2nm+2n^2ml−mn^2


y = 1/x^2, differentiate y (taken from AQA 2018 past paper)


Use simultaneous equations to find the points where the following lines cross: 3x - y = 4 and x^2 + 7y = 5


Find CO-Ordinates of intersection of 2x+3y=12 and y=7-3x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences