What stabilizes a carbocation in a nucleophilic substitution reactions?

Essentially, it is the adjacent atoms or groups attached to the central carbon atom which have the ability to stabilise or destabilise a carbocation. The formation of this carbocation is what determines the rate of the reaction (as the Rate Determining Step), therefore the level of stability of the carbocation intermediate will determine how quickly or slowly this intermediate is formed; a stable intermediate will form quicker than a more unstable one. 

Large bulky alky groups possess electron donating (ED) effects, meaning it pushes electron density onto the central positively charged carbon atom through resonance. The fewer ED groups which are attached to the central carbon the less stability will be given to the carbocation via resonance. A general rule of thumb in order of stability: tertiary carbon > secondary > primary. Also important to note that groups such as nitro or carbonyl groups will have the opposite effect as they possess a electron withdrawing (EW) effect. 

AH
Answered by Alfie H. Chemistry tutor

3377 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Figure 1 shows a maxwell-Boltzmann distribution of molecular energies of a sample of gas at a fixed temperature. (a) Label the y axis. (b) On Figure 1, sketch a maxwell-Boltzmann distribution for the same sample of gas at a lower temperature.


Why are solutions of transition metal ions often coloured


Explain how CH3CH2CHO can react with a Grignard reagent to produce CH3CH2CH(OH)CH2CH3. State the reagents and give the mechanism.


Describe why phenol reacts more readily with bromine than benzene does.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning