Prove or disprove the following statement: ‘No cube of an integer has 2 as its units digit.’

This is a very standard proof question for the C3 exam. The first thing that I would do when I see wordy proof statements like this is to make sure I understand what it means. Maybe writing out the statement more simply might help. So for this statement: n^3 never ends in 2. The second thing is just to try a few examples. With this statement, the example you should start with are nice and clear:
1^3=1 2^3=8 3^3=27 4^3=64 5^3=125 So far we haven't seen a number ending in two, and we haven't seen a pattern with the final digits yet, so we must continue.  6^3=216 7^3=343 8^3=512 So by finding a number where the statement is not true, we have found a counter-example so we have disproved it.

TD
Answered by Thomas D. Maths tutor

6722 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ln(e^x)


Use the substitution u = 2^x to find the exact value of ⌠(2^x)/(2^x +1)^2 dx between 1 and 0.


How do I integrate ln(x)?


Given that Sin(A) = 1/sqrt(3), show that Tan(A) = 1/sqrt(2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning