How do I calculate where a function is increasing/decreasing?

This depends entirely on the gradient of the function, which is calculated as (dy/dx).

At (dy/dx)= 0, the function is neither increasing nor decreasing, since the gradient is zero. The max number of stationary points will be the same as the highest power (of the differential).

Plug in values either side of these stationary points. A positive dy/dx value means that the function is increasing, and a negative one means that the function is decreasing.

For example, say an equation has a stationary point (dy/dx = 0) at x=1. I would try values such as x = 1.1 and x= 0.9. If dy/dx is positive both sides, the function therefore is increasing at x>1 and x<1. 

SH
Answered by Steve H. Maths tutor

8071 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the indefinite integral ∫(x^2)*(e^x) dx (Edexcel C4 June 2013 Question 1)


differentiate x^2 + 7x + 4


In the triangle ABC, AB = 16 cm, AC = 13 cm, angle ABC = 50 and angle BCA= x Find the two possible values for x, giving your answers to one decimal place.


Differentiate y=(x^2+5)^7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning