How to Solve: (11 − w)/4 = 1 + w

Step 1 : First we multiply both sides by 4, this is to eliminate /4 on the lhs(left hand side), and then we multiply the rhs(right hand side) by 4, this gives us (11-w) = 4(1+w) which is then equeal to 11-w = 4 + 4w Step 2 : We then group the w's on one side and the intigers on one side, we can add w to both sides to move the w from the lhs to the rhs, and move the 4 from rhs to lhs, as it is positive on rhs it becomes negative on lhs. We get 11-4 = 4W + W Step 3  : We now calculate the grouped values and get 7 = 5W, and can divide both sides by 5 to calculate W, so 7/5 or 1.4 is equal to W.

JS
Answered by Jahnavi S. Maths tutor

7738 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f:x-->2x^2+1 and g:x--> 2x/(x-1) where x is not equal to 1. express the composite function gf as simply as possible


x^2 - 10x + 33 ≡ (x - a)^2 + b. Work out the value of a and b.


Prove that the difference between the squares of two consecutive odd numbers is a multiple of 8.


How to complete the square


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning