Solve the simultaneous equations: x^2 + 8x + y^2; x - y = 10.

Label the two equations.

x2 + 8x + y2 = 84 (1)
x - y = 10 (2)

Rearrange (2) to get y = x - 10 and substitute for y in (1) to get x2 + 8x + (x - 10)2 = 84. Expanding and collecting like terms gives 2x2 -12x + 16 = 0 (3). Dividing (3) through by 2 gives x2 - 6x + 8 = 0 (4). Factorising (4) gives (x - 2)(x - 4) = 0 so either x = 2 and y = -8 or x = 4 and y = -6.

LT
Answered by Lewis T. Maths tutor

5295 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

2^-8 = ?


Given y = 9x + 1/x, find the values of x such that dy/dx=0


Core 3 - Modulus: Solve the equation |x-2|=|x+6|.


If 2 log(x + a) = log(16a^6), where a is a positive constant, find x in terms of a


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning