How do you solve simultaneous equations?

I will run through an example of how to solve a set of simultaneous equations. In simultaneous equations you are given two or more algebraic equations and you need to solve them for the variables, usually called x and y. You start off by trying to get equivalent coefficients for either the x or y value in both of the equations.  For example: (1) 4x + y = 24 and (2) 7x + 3y = 47. Here we can multiply equation (1) by 3 so that both the x coefficients are equal to 3. So 3*(1) is equivalent to 12x + 3y =72. Now we can subtract (2) from 3*(1). This gives 5x + 0y = 25, giving 5x = 25 therefore x = 5. Substituting x back into equation (1) we get 4*5 + y =24. So y = 24 - 20 and y = 4. Giving us the solutions: x=5 and y=4.

DH
Answered by Dorothy H. Maths tutor

3491 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

simplify 36^(-1/2)


In a competition, a prize is won every 2014 seconds. Work out an estimate for the number of prizes won in 24 hours. You must show your working. (4 marks)


15 machines work at the same rate, 15 machines can complete an order in 8 hours, however 3 of the machines break down after 6 hours. The other machines continue until the order is complete. In total how many hours does EACH machine work? (3 mark question)


The Curve C has the equation 2x^2-11+13. The point Q lies on C such that the gradient of the normal to C at Q is -1/9. Find the x-co-ordinate of Q


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning