Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.

After short consideration, we see that we must integrate f(x) with respect to x, between 0 and π/2, using integration by parts. Taking the formula for integration by parts, we set u = x and dv/dx = sin(2x). This implies that du/dx = 1 and v = -cos(2x)/2. Substituting this into the formula, we see that the integral is equal to evaluating (-x * cos(2x) / 2) between π/2 and 0, minus the integral of (-cos(2x)/2) between π/2 and 0.

This is equivalent to evaluating the expression ((-x * cos(2x) / 2) + (sin(2x) / 4)) between π/2 and 0. This is equal to (π/4 + 0) - (0 + 0) = π/4. Hence the area specified in the question is equal to π/4 units squared.

Answered by Benjamin C. Maths tutor

4243 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area bounded by the curve x^3-3x^2+2x and the x-axis between x=0 and x=1.


A cannon at ground level is firing at a fort 200m away with 20m high walls. It aims at an angle 30 degrees above the horizontal and fires cannonballs at 50m/s. Assuming no air resistance, will the cannonballs fall short, hit the walls or enter the fort?


Differentiate x^2+4x+9.


The line AB has equation 3x + 5y = 7, find; a) the gradient of AB b) the x-axis and y-axis intercepts c) sketch the graph


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences