Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.

After short consideration, we see that we must integrate f(x) with respect to x, between 0 and π/2, using integration by parts. Taking the formula for integration by parts, we set u = x and dv/dx = sin(2x). This implies that du/dx = 1 and v = -cos(2x)/2. Substituting this into the formula, we see that the integral is equal to evaluating (-x * cos(2x) / 2) between π/2 and 0, minus the integral of (-cos(2x)/2) between π/2 and 0.

This is equivalent to evaluating the expression ((-x * cos(2x) / 2) + (sin(2x) / 4)) between π/2 and 0. This is equal to (π/4 + 0) - (0 + 0) = π/4. Hence the area specified in the question is equal to π/4 units squared.

Answered by Benjamin C. Maths tutor

4238 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation for the tangent to the curve y^3 + x^3 + 3x^2 + 2y + 8 = 0 at the point (2,1)


Given that y = 4x^5 - 5/(x^2) , x=/=0 , find a)dy/dx b)indefinite integral of y


How would you use the following expression to approximate [(4-5x)/(1+2x)(2-x)] when x=5 (A2 pure)


Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences