Let E be an ellipse with equation (x/3)^2 + (y/4)^2 = 1. Find the equation of the tangent to E at the point P where x = √3 and y > 0, in the form ax + by = c, where a, b and c are rational.

In order to find the equation of the tangent to a curve at a point (x1, y1), we use the equation y - y1 = m(x - x1), where m is the gradient of the curve at (x1, y1). We already have x1 = √3, so we now must find y1 and m.

Recall that an ellipse with equation (x/a)2 + (y/b)2 = 1 has parametric equations x = a cos(t) and y = b sin(t), so in this case, E is described by the parametric equations x = 3 cos(t) and y = 4 sin(t). Since x = √3, cos(t) = 1/√3, and hence sin(t) = √(2/3), which indicates that y1 = 4√(2/3). We then use the identity dy/dx = (dy/dt) / (dx/dt). dy/dt = 4 cos(t) and dx/dt = -3 sin(t), hence dy/dx = -4/3 cot(t). Since sin(t) = √(2/3) and cos(t) = 1/√3, cot(t) = 1/√2, hence dy/dx at this point is -(2√2)/3, so m = -(2√2)/3.

Finally, we simply sub m, x1 and y1 into our equation and rearrange. y - 4√(2/3) = -(2√2)/3 * (x - √3), implying that 3y - 4√6 = 2√6 - (2√2)x, which we can rearrange into the required form: (2√2)x + 3y = 6√6, with a = 2√2, b = 3 and c = 6√6.

Related Further Mathematics A Level answers

All answers ▸

Solve the second order differential equation d^2y/dx^2 - 4dy/dx + 5y = 15cos(x), given that when x = 0, y = 1 and when x = 0, dy/dx = 0


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


Evaluate the following product of two complex numbers: (3+4i)*(2-5i)


Why does matrix multiplication seem so unintuitive and weird?!


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences