There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.

We first want to find the equations of the lines. The general equation of a line is: (y-y1)=m(x-x1) where (x1,y1) are the coordinates of a point on the line and m is the gradient of the line. 
In case of line one, L1: (y-y1)=m1(x-x1). Let (x1,y1) = A(-2,5) and the gradient of the line using the given points: A(xa,ya), B(xb,yb) => m1=(ya-yb) / (xa-xb)= (5-2)/(-2-3)= -3/5             
So we get L1: (y-5) = -3/5(x+2)
                         y-5 = (-3/5)x - 6/5      /+5
                            y = (-3/5)x + 19/5
Line two, L2: (y-y2)=m2(x-x2). Let (x2,y2) = C(-1,-2) and the gradient is similarly m= (-2-1) / (-1-4) = -3/-5 = 3/5
L2: y+1 = 3/5(x+2)
      y+1 = (3/5)x + 6/5    /-1
          y = (3/5)x + 1/5
If the lines intersect we get a point E(x,y), which satisfies both line equations. (If we draw a quick picture we see that the lines intersect). Using the y coordinate of E we get:
(-3/5)x + 19/5 =(3/5)x + 1/5    / *15
         -9x + 57 = 5x + 3           / +9x - 3
                  54 = 14x               /  :14
                    x = 27/7
Using L2: y = (1/3)(27/7) + 1/5 = 52/35
So the intersection point is E(27/7, 52/35)
Check if E satisfies the equations and the calculation was correct:
L1: 52/35 = (-3/5)(27/7) + 19/5 = 52/35
L2​​​​​​​: 52/35 = (1/3)(27/7) + 1/5 = 52/35

Answered by Zsofia S. Maths tutor

6754 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let C : x^2-4x+2k be a parabola, with vertex m. By taking derivatives or otherwise discuss, as k varies, the coordinates of m and, accordingly, the number of solutions of the equation x^2-4x+2k=0. Illustrate your work with graphs


differentiate with respect to 'x' : ln(x^2 + 3x + 5)


The function f is defined as f(x) = e^(x-4). Find the inverse of f and state its domain.


Can you help me understand how Arithmetic sequences work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences