What is the gradient of the quadratic function y=3x²?

The gradient of a function with variable x is found by applying the differential operator to it. The differential operator is commonly written as d/dx. Hence the differential operator applied to the function y is written to be dy/dx. The differential operator, in the generic polynomial case takes the function that it’s ‘operating’ on and takes a power of a polynomial inside the function, multiplies the entire function by the value of the power, then the polynomials power is decreased by one. I.e. If y=xn, for n being a real value. Then dy/dx=nxn-1. For the equation given, If y=3x2 then by the differential operator, dy/dx=(3)(2)x2-1=6x = gradient of y for all x being a real value.

MC
Answered by Matthew C. Maths tutor

8933 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the parametric equations x=6*4^t-2 and y=3*(4^(-t))-2, Find the Cartesian equation of the curve in the form xy+ax+by=c


Given that y = 5x^(3) + 7x + 3, find dy/dx


How do you conduct a two tailed binomial hypothesis test


Find the first derivative of the line equation y=x^3 + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences