What is the gradient of the quadratic function y=3x²?

The gradient of a function with variable x is found by applying the differential operator to it. The differential operator is commonly written as d/dx. Hence the differential operator applied to the function y is written to be dy/dx. The differential operator, in the generic polynomial case takes the function that it’s ‘operating’ on and takes a power of a polynomial inside the function, multiplies the entire function by the value of the power, then the polynomials power is decreased by one. I.e. If y=xn, for n being a real value. Then dy/dx=nxn-1. For the equation given, If y=3x2 then by the differential operator, dy/dx=(3)(2)x2-1=6x = gradient of y for all x being a real value.

Answered by Matthew C. Maths tutor

8043 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Is the function f(x)=x^3+24x+3 an increasing or decreasing function?


How do you integrate ln(x) with respect to x?


Differentiate with respect to x. y(x) = e^(7x^2)


Differentiate the following equation with respect to x; sinx + 3x^2 - 2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences