What is the gradient of the quadratic function y=3x²?

The gradient of a function with variable x is found by applying the differential operator to it. The differential operator is commonly written as d/dx. Hence the differential operator applied to the function y is written to be dy/dx. The differential operator, in the generic polynomial case takes the function that it’s ‘operating’ on and takes a power of a polynomial inside the function, multiplies the entire function by the value of the power, then the polynomials power is decreased by one. I.e. If y=xn, for n being a real value. Then dy/dx=nxn-1. For the equation given, If y=3x2 then by the differential operator, dy/dx=(3)(2)x2-1=6x = gradient of y for all x being a real value.

MC
Answered by Matthew C. Maths tutor

9421 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that f(x) = 1/x - sqrt(x) + 3. Find f'(1).


x = 1 is a solution for the curve y = x^3-6x^2+11x-6, find the other solutions and sketch the curve, showing the location of any stationary points.


Solve the following equation: 4(sinx)^2+8cosx-7=0 in the interval 0=<x=<360 degrees.


Differentiate y = x^3− 5x^2 + 3x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning