Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.

The first eigenvalue is 3, whose corresponding eigenvector is (1, 1), and the second eigenvalue is 2, whose corresponding eigenvector is (3, 4). In diagonal form, A = PDP^-1, where P = [[1, 3], [1, 4]] and D = [[3, 0], [0, 2]].

MU
Answered by Michael U. Further Mathematics tutor

2989 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


Calculate the value of the square root of 3 to four decimal places using the Newton-Raphson process


How does proof by induction work?


Show that the matrix A is non-singular for all real values of a


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning