Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.

The first eigenvalue is 3, whose corresponding eigenvector is (1, 1), and the second eigenvalue is 2, whose corresponding eigenvector is (3, 4). In diagonal form, A = PDP^-1, where P = [[1, 3], [1, 4]] and D = [[3, 0], [0, 2]].

MU
Answered by Michael U. Further Mathematics tutor

2996 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by mathematical induction that 11^n-6 is divisible by 5 for all natural numbers n


Express cos5x in terms of increasing powers of cosx


How to calculate the integral of sec(x)?


P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning