Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.

The first eigenvalue is 3, whose corresponding eigenvector is (1, 1), and the second eigenvalue is 2, whose corresponding eigenvector is (3, 4). In diagonal form, A = PDP^-1, where P = [[1, 3], [1, 4]] and D = [[3, 0], [0, 2]].

MU
Answered by Michael U. Further Mathematics tutor

3028 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Evaluate ∫sin⁴(x) dx by expressing sin⁴(x) in terms of multiple angles


Prove that (AB)^-1 = B^-1 A^-1


Find all of the roots of unity, Zn, in the case that (Zn)^6=1


Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning