Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.

The first eigenvalue is 3, whose corresponding eigenvector is (1, 1), and the second eigenvalue is 2, whose corresponding eigenvector is (3, 4). In diagonal form, A = PDP^-1, where P = [[1, 3], [1, 4]] and D = [[3, 0], [0, 2]].

MU
Answered by Michael U. Further Mathematics tutor

2901 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

explain the eigenvalue problem


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


Find the eigenvalues for the matrix (4/2/3,2/7/0,-2/1/8)


Find the determinant of matrix M. [3]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning