To differentiate a simple equation: y= 4x^3 + 7x

y = 4x^3 + 7 x

Recall: to differentiate any function of the form y = x^n

dy/dx = y' = n x^(n-1)

Hence if y = 4x^3 + 7x

dy/dx = 4 ( 3x^3 -1) + 7x^(1-1)          

= 12 x^2 + 7

YS
Answered by Yusuf S. Further Mathematics tutor

6459 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


A curve has equation: y = x^3 - 3x^2 + 5. Show that the curve has a minimum point when x = 2.


What is the equation of a circle with centre (3,4) and radius 4?


A=(1,a;0,1/2) B=(1,-1;0,2) AB=I, calculate the value of a.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences