To differentiate a simple equation: y= 4x^3 + 7x

y = 4x^3 + 7 x

Recall: to differentiate any function of the form y = x^n

dy/dx = y' = n x^(n-1)

Hence if y = 4x^3 + 7x

dy/dx = 4 ( 3x^3 -1) + 7x^(1-1)          

= 12 x^2 + 7

Related Further Mathematics GCSE answers

All answers ▸

y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.


Solve the following simultanious equations: zy=28 and 2z-3y=13


A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


x^3 + 2x^2 - 9x - 18 = (x^2 - a^2)(x + b) where a,b are integers. Work out the three linear factors of x^3 + 2x^2 - 9x - 18. (Note: x^3 indicates x cubed and x^2 indicates x squared).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences