Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.

Firstly, use the factor theorem to determine one factor. Substitute factors of 24 into the equation, beginning at plus or minus 1 and then increasing. The first factor found will be -2, therefore (x+2) is a factor.

Using polynomial division, we find that (x3 + x2 -14x-24)/(x+2) = x2 - x -12. This can be easily factorised into (x-4)(x+3), so the final answer is (x-4)(x+3)(x+2).

This can be checked by expanding the brackets.

Answered by Scarlet W. Maths tutor

14373 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is 'Chain Rule' and why is it useful?


Find the value of: d/dx(x^2*sin(x))


Find the equation of the tangent at x=1 for the curve y=(4x^2+1)^3


Differentiate y = arcsin(x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences