Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.

Firstly, use the factor theorem to determine one factor. Substitute factors of 24 into the equation, beginning at plus or minus 1 and then increasing. The first factor found will be -2, therefore (x+2) is a factor.

Using polynomial division, we find that (x3 + x2 -14x-24)/(x+2) = x2 - x -12. This can be easily factorised into (x-4)(x+3), so the final answer is (x-4)(x+3)(x+2).

This can be checked by expanding the brackets.

Answered by Scarlet W. Maths tutor

14240 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At time t = 0 a particle leaves the origin and moves along the x-axis. At time t seconds, the velocity of P is v m/s in the positive x direction, where v=4t^2–13t+2. How far does it travel between the times t1 and t2 at which it is at rest?


Integrate 3t^2 + 7t with respect to t, between 1 and three.


Find the turning points and their nature of the graph y = x^3/3 - 7x^2/2 + 12x + 4


Differentiate 5x^3 + 4x^2 + 5x + 9


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences