How do I express complicated logs as single logarithms?

The process of transforming a complicated log to a single logarithm depends on the question. However, there are some basic rules and methods that are commonly involved.

Here is an example:

Example

Express 2log3x – log3(x + 4) as a single logarithm

Step 1:

Use the power log rule. The coefficient of 2log3x becomes the power.

log3x2 - log3(x+4)

This makes it easier to compare the logs as you have the same coefficient.

Step 2:

Use the log rule that states subtracting two logs in the same base is the same as division. The subtraction outside can be turned into division inside.

log3x2/(x+4)

You can do this because both logs have the same base (3)

Tips:

  • Make sure the logs contain the same base

  • Revise the basic log rules so you can easily apply them

Answered by Keeley L. Maths tutor

9450 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find CO-Ordinates of intersection of 2x+3y=12 and y=7-3x


Solve the equation 2x^3 - 5x^2 - 4x + 3 = 0.


For a graph C with equation y=3/(5-3x)^2, find the the equation of the line normal to the graph at point P, where x=2. Give your answer in the form ax+by+c=0


Find the general solution, in degrees, of the equation 2sin(3x+45°)=1. Use your general solution to find the solution of 2sin(3x+45°)=1 that is closest to 200 °.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences