How to calculate acidic buffer solution pH, and how do they behave?

Example: Calculate the pH of a buffer solution which contains the weak monoprotic acid, propanoic acid (CH3CH2COOH), in concentration 0.1 moldm-3 and sodium propanoate in concentration 0.05 moldm-3. Ka of propanoic acid is 1.26×10-5 moldm-3. What happens when an acid is added to the solution? What happens when a base is added? This is an example of an acidic buffer solution, consisting of an acid (propanoic acid) and one of its salts (sodium propanoate). This gives the solution plenty of the acid (propanoic acid) and its anion (CH3CH2COO-). Propanoic acid is a weak acid, so position of equilibrium for its dissociation lies well to the left. Adding propanoate ions (given from sodium propanoate) pushes this further left according to Le Chatelier's Principle. An assumption can therefore be made that [CH3CH2COO-]=[added sodium propanoate]. A buffer solution system works to minimalise any change to the pH. If an acid is added, that means that there is an influx of protons. This pushes the equilibrium to the left to produce propanoic acid, by reacting the protons with the reservoir of propanoate ions. If a base is added, the added OH- ions can be dealt with in two ways: They can react with propanoic acid to form propanoate ions and water, or react with protons to form water. As the proton concentration would drop, the equilibrium shifts to the right, dissociating more propanoic acid to upkeep proton concentration and therefore pH.

KH
Answered by Kareem H. Chemistry tutor

21508 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How do heterolytic catalysts work?


In order to find the [H+] ion content of H2SO4 (Sulphuric Acid), why must you divide by two after using the formula for pH calculation?


How would you name complex organic compounds?


Describe and explain the trend in reactivity of Group 2 elements with chlorine as the group is descended?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences