A curve has the equation y = 4x^3 . Differentiate with respect to y.

y = 4x3 To differentiate you must find dy/dx. To calculate dy/dx, look at this example using just letters from algebra: y = axb dy/dx = (ab)x(b-1) As you can see, to calculate dy/dx you must multiply the number preceding x (in this example this number is represented by the letter: a) by the number that x is to the power of (which is in this case is represented by the letter: b). You then subtract 1 from the integer to give you a new integer (in this case represented by: b-1). Using this logic, we will go through the question in a couple of steps. Firstly, identify which numbers represent 'a' and 'b' in this question: y = 4x3 So, a = 4, and b=3. Putting these numbers into our formula (dy/dx = (ab)x(b-1) ) gives us: ab = 12 b - 1 = 2 Therefore, we can substitute these answers into our formula, giving us our final answer: dy/dx = 12x2

Answered by Samuel H. Maths tutor

3630 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x


Show that sqrt(27) + sqrt(192) = a*sqrt(b), where a and b are prime numbers to be determined


Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)


Solve simultaneously: x + y + 3 = 0 and y = 2x^2 +3x - 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences