Find f(x^(1/2)+4)dx (Where f is the integral sign)

The general form for an integrand if the integral is of the form f(x^n)dx is (1/(n+1)) * x^(n+1) +c This is applied to each term in the question, remembering the constant in the integrand:

So: f(6x+x^(1/2)+4)dx 

=(1/((1/2)+1))*x^((1/2)+1) + (1/(0+1))*x^(0+1) + c

note that 4=4x^0=4*1 as anything to the power of 0 is equal to one- x has an exponent of zero (n=0).

Simplifying terms:

f(6x+x^(1/2)+4)dx = (2/3)x^(3/2) + 4x + c

MA
Answered by Michael A. Maths tutor

3449 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0


y =(4x)/(x^2+5) (a) Find dy/dx, writing your answer as a single fraction in its simplest form. (b) Hence find the set of values of x for which dy/dx<0


find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


Find the equation of a straight line that passes through the coordinates (12,-10) and (5,4). Leaving your answer in the form y = mx + c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning