Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)

f(x)=2x3+23x2+3x+5

f'(x)=6x2+46x+3

Maximum or minimum when f'(x)=0

6x2+46x+3=0

Using the Quadratic Formula: x=(-b+-squareroot(b2-4ac))/2a

x1=-0.0658

x2=-7.6

Answered by Sanjana K. Maths tutor

3675 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points on the curve: y = x^3 + 3x^2 +2x+5


How to differentiate y=2x(x-2)^5 to find dy/dx?


Differentiate 3x^(2)+xy+y^(2)=12 with respect to x


Prove that (root)2 is irrational


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences