Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)

f(x)=2x3+23x2+3x+5

f'(x)=6x2+46x+3

Maximum or minimum when f'(x)=0

6x2+46x+3=0

Using the Quadratic Formula: x=(-b+-squareroot(b2-4ac))/2a

x1=-0.0658

x2=-7.6

SK
Answered by Sanjana K. Maths tutor

4262 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y= 1/ (6x-3)^0.5 find the value of dy/dx at (2;1/3)


f(x) = x^3 - 13x^2 + 55x - 75 , find the gradient of the tangent at x=3


How would I go about drawing the graph of f(x) = sin(x)/(e^x) for -π≤x≤2π?


Integrate the function : F'(x)=3x^2+4x-5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning