Why is the derivative of x^n, nx^(n-1)?

From the definition of a derivative: f'(x) = lim h->0 ((f(x+h) - f(x)) / h) Let f(x) = x^n --> d\dx x^n = lim h->0 (((x+h)^n - x^n) / h) By binomial expansion, (x+h)^n = x^n + nhx^(n-1) + n(n-1)h^2 x^(n-2) + ... + h^n --> d\dx x^n = lim h->0 ((x^n + nhx^(n-1) + n(n-1)h^2 x^(n-2) + ... + h^n - x^n) / h) = lim h->0 (nx^(n-1) + n(n-1)h x^(n-2) + ... + h^(n-1)) = nx^(n-1)

JF
Answered by Joshua F. Maths tutor

4712 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Three forces, (15i + j) N, (5qi – pj) N and (–3pi – qj) N, where p and q are constants, act on a particle. Given that the particle is in equilibrium, find the value of p and the value of q. (Mechanics 1 June 2017)


How do I solve an integration by substitution problem?


Simplify: 3l^2mn+nl^2m−5mn^2l+l^2nm+2n^2ml−mn^2


How do you integrate by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning