Why is the derivative of x^n, nx^(n-1)?

From the definition of a derivative: f'(x) = lim h->0 ((f(x+h) - f(x)) / h) Let f(x) = x^n --> d\dx x^n = lim h->0 (((x+h)^n - x^n) / h) By binomial expansion, (x+h)^n = x^n + nhx^(n-1) + n(n-1)h^2 x^(n-2) + ... + h^n --> d\dx x^n = lim h->0 ((x^n + nhx^(n-1) + n(n-1)h^2 x^(n-2) + ... + h^n - x^n) / h) = lim h->0 (nx^(n-1) + n(n-1)h x^(n-2) + ... + h^(n-1)) = nx^(n-1)

Answered by Joshua F. Maths tutor

3770 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integral of (tan(x))dx using the substitution u = cos(x)


the line L goes through the points A (3,1) and B(4,-2). Find the equation for L.


integrate xcosx


Where do the kinematics equations (SUVAT) come from?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences