Why is the derivative of x^n, nx^(n-1)?

From the definition of a derivative: f'(x) = lim h->0 ((f(x+h) - f(x)) / h) Let f(x) = x^n --> d\dx x^n = lim h->0 (((x+h)^n - x^n) / h) By binomial expansion, (x+h)^n = x^n + nhx^(n-1) + n(n-1)h^2 x^(n-2) + ... + h^n --> d\dx x^n = lim h->0 ((x^n + nhx^(n-1) + n(n-1)h^2 x^(n-2) + ... + h^n - x^n) / h) = lim h->0 (nx^(n-1) + n(n-1)h x^(n-2) + ... + h^(n-1)) = nx^(n-1)

JF
Answered by Joshua F. Maths tutor

4120 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Ignoring air resistance and assuming gravity to equal 9.81. If a ball of mass 1kg is dropped from a height of 100m, calculate it's final velocity before it hits the ground.


proof for the derivative of sin(x) is cos(x) (5 marks)


If y = 2/3 x^3 + x^2; a) What is dy/dx? b) Where are the turning points? c) What are the nature of the turning points?


How do we integrate x^2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences