Find the equation of the tangent of the curve y = (8x)/(x-8) at the point (0,0)

We will be using the quotient rule, although the product rule is also usable and can be run through if the student wishes. Firstly, define u = 8x, v = x-8 for simplicity. Then clearly u' = 8, v' = 1, and so by the quotient rule we get y' = -64/(x-8)2. As we wish to find the tangent at the origin, we need the gradient at the point so we evaluate y'(0) = -1. Finally, using the line equation gives us y-y1 = m(x-x1) ==> y-0 = -1(x-0) ==> y = -x is the tangent to the curve at the origin. 

TK
Answered by Timofey K. Maths tutor

3722 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.


Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0


Given that y = x^4 tan(2x), find dy/dx


solve 4^xe^(7x+5) = 21


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning