Given: h=3t^2, work out the value of h when t=5.

We have been told that t = 5 in this particular question. So our first step is to simply 'swap out' the t in the above equation for the number 5, as we have been told they mean the same thing. This gives us: h = 3(5)^2 And now our equation looks a lot more friendly, as there are no letters! Now that follows in calculation. The only other bit of knowledge we need to remember, for all algebra problems, is the BIDMAS idea. This stands for Brackets, Indicies, Division, Multiplication, Addition and Subtraction, and represents the order in which we carry out 'operations' or adding/subtracting/timesing numbers. If you find it hard to remember, it may be worth just jotting it down on the page when you see algebra questions pop up. So using BIDMAS, and looking at the equation, we see that first we do the Indicies operation, and then the Multiplication. And so our last two steps: h = 3(25) h=75. Which is our final answer! 

Answered by Alexander D. Maths tutor

7637 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the roots of x^2+5x+4=0


Solve for x and y: 2x +5y + 5= 0 , 2y + 31= 5x


Write an equation for a line parallel to 2y = 4x - 10


Find the possible values of x for x^2 = 36-5x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences