The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.

a) We know that, for a general quadratic equation that can be written as : ax2+bx+c=0, the sum of its roots (S) is equal to -b/a and the product of its roots (P) is equal to c/a (which can easily be verified). We have S=-b/a and P=c/a

In this example, a=1, b=-6 and c=14. Therefore we have : S=alpha+beta=6/1=6 and P=alpha*beta=14/1=14

b) The equation we want to find is a quadratic equation, that can be written as : ax2+bx+c=0

We know that :

S=alpha/beta+beta/alpha=(alpha2+beta2)/(alphabeta)=-b/a and P=alpha/betabeta/alpha=1=c/a

<=> [(alpha+beta)2-2alphabeta]/(alpha*beta)=-b/a and c=a

<=> (62-2*14)/14=8/14=4/7=-b/a and c=a (using the results we found in question a)

<=> b=-(4/7)*a and c=a

We know that ax2+bx+c=0. So using the results we just found, we have :

ax2-(4/7)a+a=0 <=> a(x2-(4/7)*x+1)=0 <=> x2-4/7x+1=0 <=> 7x2-4x+7=0 (because we want integer coefficients).

BC
Answered by Blanche C. Further Mathematics tutor

26207 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


How do I find the inverse of a 3x3 matrix?


The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


Find the general solution to the second order differential equation x'' - 2x' + x = e^(2t).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning