The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.

a) We know that, for a general quadratic equation that can be written as : ax2+bx+c=0, the sum of its roots (S) is equal to -b/a and the product of its roots (P) is equal to c/a (which can easily be verified). We have S=-b/a and P=c/a

In this example, a=1, b=-6 and c=14. Therefore we have : S=alpha+beta=6/1=6 and P=alpha*beta=14/1=14

b) The equation we want to find is a quadratic equation, that can be written as : ax2+bx+c=0

We know that :

S=alpha/beta+beta/alpha=(alpha2+beta2)/(alphabeta)=-b/a and P=alpha/betabeta/alpha=1=c/a

<=> [(alpha+beta)2-2alphabeta]/(alpha*beta)=-b/a and c=a

<=> (62-2*14)/14=8/14=4/7=-b/a and c=a (using the results we found in question a)

<=> b=-(4/7)*a and c=a

We know that ax2+bx+c=0. So using the results we just found, we have :

ax2-(4/7)a+a=0 <=> a(x2-(4/7)*x+1)=0 <=> x2-4/7x+1=0 <=> 7x2-4x+7=0 (because we want integer coefficients).

Related Further Mathematics A Level answers

All answers ▸

What are imaginary numbers and why do we use them?


Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2


Give the general solution of the second order ODE dy2/d2x - 4dy/dx + 3 = 0


Prove by induction that f(n) = 2^(k + 2) + 3^(3k + 1) is divisible by 7 for all positive n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences