A curve has the equation y=x^3+2x+15. Find dy/dx.

Here, we are asked to differentiate with respect to x. That is what dy/dx stands for. So, we are only concerned with the terms involving x; that is x^3 and 2x. To differentiate you need to time x (and its coefficient) by its power and then subtract 1 from the power. For example, x^3 becomes 3x^2 and 2x becomes 2x^0, which is just 2.  So dy/dx=3x^2+2.

ZA
Answered by Zein A. Maths tutor

3523 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve y = 4x^2 + a/ x + 5 has a stationary point. Find the value of the positive constant a given that y-ordinate of the stationary point is 32.


Differentiate x^3 + 6x + 1


Solve the differential equation: e^(2y) * (dy/dx) + tan(x) = 0, given that y = 0 when x = 0. Give your answer in the form y = f(x).


Find all values of x in the interval 0 ≤ x ≤ 2pi for 2sin(x)tan(x)=3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning