A curve has the equation y=x^3+2x+15. Find dy/dx.

Here, we are asked to differentiate with respect to x. That is what dy/dx stands for. So, we are only concerned with the terms involving x; that is x^3 and 2x. To differentiate you need to time x (and its coefficient) by its power and then subtract 1 from the power. For example, x^3 becomes 3x^2 and 2x becomes 2x^0, which is just 2.  So dy/dx=3x^2+2.

ZA
Answered by Zein A. Maths tutor

3525 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the second derivative used for?


A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


Prove the change of base formula for logarithms. That is, prove that log_a (x) = log_b (x) / log_b (a).


A circle has the equation x^2 + y^2 - 4x + 10y - 115 = 0. Express the equation in the form (x - a)^2 + (y - b)^2 = k, and find the centre and radius of the circle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning