Derive the quadratic formula (Hint: complete the square)

Firstly, the quadratic formula finds the roots of a quadratic equation. 
So this means f(x) = 0. A general polynomial with highest power 2 looks like: ax+ bx +c.
Usings the two facts we just stated, we solve for the roots of ax+ bx +c = 0. ax+ bx +c = 0
x+ (b/a)x + (c/a) = 0
USINGING THE HINT
(x + (b/2a))- (b/2a)2 + (c/a) = 0
(x + (b/2a))2 = (b/2a)2 -(c/a)  
Make the right hand side all one fraction
(x + (b/2a))2 = (b2/4a2) - (4ac/4a2)
(x + (b/2a))2 = (b2-4ac) / 4a2
Squareroot both sides
x + (b/2a) = (+/-) (b2-4ac)1/2 / 2a          (The (+/-) comes from the squareroot having 2 sol's. e.g 41/2 = 2 or -2)
x = (-b (+/-) (b2-4ac)1/2) / 2a

Answered by Riu K. Maths tutor

3362 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y^3 + 3y^2 + 5


Consider the functions f and g where f (x) = 3x − 5 and g (x) = x − 2 . (a) Find the inverse function, f^−1 . (b) Given that g^−1(x) = x + 2 , find (g^−1 o f )(x) . (c) Given also that (f^−1 o g)(x) = (x + 3)/3 , solve (f^−1 o g)(x) = (g^−1 o f)(x)


integrate 5x^2 + x + 2 and find the value of c if the curve lies on the coordinates (1,3)


Differentiate a^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences