Derive the quadratic formula (Hint: complete the square)

Firstly, the quadratic formula finds the roots of a quadratic equation. 
So this means f(x) = 0. A general polynomial with highest power 2 looks like: ax+ bx +c.
Usings the two facts we just stated, we solve for the roots of ax+ bx +c = 0. ax+ bx +c = 0
x+ (b/a)x + (c/a) = 0
USINGING THE HINT
(x + (b/2a))- (b/2a)2 + (c/a) = 0
(x + (b/2a))2 = (b/2a)2 -(c/a)  
Make the right hand side all one fraction
(x + (b/2a))2 = (b2/4a2) - (4ac/4a2)
(x + (b/2a))2 = (b2-4ac) / 4a2
Squareroot both sides
x + (b/2a) = (+/-) (b2-4ac)1/2 / 2a          (The (+/-) comes from the squareroot having 2 sol's. e.g 41/2 = 2 or -2)
x = (-b (+/-) (b2-4ac)1/2) / 2a

Answered by Riu K. Maths tutor

3365 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.


Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x . [4]


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 + 2x + 3. Given that (x-3) is a factor of f(x), express f(x) in factorised form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences